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Molecular theory of elastic constants of liquid crystals. Ill. Application to smectic phases
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Using the density-functional formalism we derive an expression for the distortion free energy of systems
with continuous broken symmetry and use it to derive an expression for the elastic constants of smectic phases
in which the director is tilted with respect to the smectic layer normal. As in the previous papers of this series
[Y. Singh, S. Singh, and K. Rajesh, Phys. Rev4% 974(1992; Y. Singh, K. Rajesh, V. J. Menon, and S.
Singh, Phys. Rev. B9, 501(1994], the expressions for the elastic constants are written in terms of order and
structural parameters. The structural parameters involve the generalized spherical harmonic coefficients of the
direct pair correlation function of an effective isotropic liquid. The density of this effective isotropic liquid
depends on the nature and amount of ordering present in the system and is evaluated self-consistently. We
estimate the value of elastic constants using reasonable guesses for the order and structural parameters.
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I. INTRODUCTION orientational order is described by a two-dimensional unit

_ _ _ vector, which is along the projection afon the layer and is
In a previous papei] of this serieghereafter referred o yenoted ag (see Fig. 1 The direction ofc is defined rela-
as ) we developed a theory based on the density-functionafye to a chosen axis in the plane and simultaneously with the

formalism[2] for the deformation free energy of any system sign of projection ofh on the normal to the layer. The cor-

with continuous broken symmetry, and applied the theory to

derive expressions for the elastic constants of uniaxial nemr_elation of the tilt direction of different layers implies that

atic and smectié (SmA) phases. In the second pafiéi _muAst beAuniform oyer macroscopic distances. ThoughCSm-
(hereafter referred to as)lthe theory was applied to derive S N« —N symmetric, such a symmetry operation does not
expressions for all the 12 bulk elastic constants of biaxiahold for thec director. The states described bynd —c are
nematic phase of orthorhombic symmetry. These expression®t equivalent and henads a two-dimensional polar vector.
of elastic constants are written in terms of order parameterghe tilted structure introduces biaxiallity within the layers
that characterize the nature and amount of ordering in thand SmE is optically biaxial with point symmetr{,y, .
phase and the structural parameters that involve the general- The other nonchiral smectic phases of this class, namely,
ized spherical harmonic coefficients of the direct pair corre-Sm4, Sm+, and SmK all possess more order than the &m-
lation function of an effective isotropic liquid, the density of Phase. In these, each smectic layer is an independent two-
which is determined using a criterion of the weighteddimensional bond-orientational ordered system. The cou-
density-functional formalism. The purpose of this paper is toling between neighboring hexatic layers drives the quasi-
expand upon the theory given in | and apply it to those!ong-range, hexatic bond-orlentatlonal ordering of a layer
smectic phases in which the director is tilted with respect tdnto & truly long range ordered hexatic state. Therefore these
the smectic-layer normal. This class of smectics includesPhases have long ranged bond-orientational order but short
Sm<C, Smi, SmF, and SmK phases and their chiral ver- ranged positional order in the layer in a three-dimensional
sions. stacked hexatic system. The direcipras in SmE, makes a

In general, smectic liquid crystals have a stratified strucfinite angle with the layer normal. These phases, in spite of
ture with the long axes of the rodlike or lathlike moleculeshaving quite different local order, have the same symmetry
parallel to each other in the layers. This situation corre-as a SmE phase. The phase transition between Grand
sponds to partial breakdown of translational invariance.
Since a variety of molecular arrangements are possible z
within each layer, a number of smectic phases are possible Symmetry plane
Thus a smectic is defined by its periodicity in one direction
of space and by its point group symmetry, which is a con-
tinuous or discrete subgroup ©f..;,. In this article we are
confined to those smectic phases where point group symme
tries areC,, andC,. The most important phases of this class
of smectics, as far as elasticity is concerned, areCSand
Sm-C* phases. .

In Sm-C the molecules are arranged as shown in Fig. 1.
Each smectic layer is a two-dimensional liquid. The director g5 1. Molecular arrangements in S@he directorsh, ¢, and

n makes a finite angle with the normal to the layer. The tiltedthe space-fixed coordinate frame.
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one of the tilted hexatic phases is found to be first order. Thidl. CONTINUUM THEORY FOR ELASTIC FREE ENERGY
transition is analogous to the three-dimensional liquid to va- DENSITY

por transition, Y‘.’hiCh is_ first orde_r up to a critical point, gpd An undeformed smectic has parallel and equidistant lay-
beyond the critical point there is no real phase transitiong. anq 5 position independent director. When some small
One can go continuously from one to the other phase withoutyyjitude long wavelength distortions are imposed on this
a phase transition at all. The expressions for the elastic fregqg) state, layers may get displaced and curved. Let
energy density of these phases are, therefore, similar to thgfy,y, z) represent displacements of the layer normal to their
of SmC; the difference can be only quantitative. In view of pjanes. A layer at, before displacement is now at
this we discuss the elasticity of S@&phase only.

The chiral smectic (Sm-C*) has a modulated structure Z(X,y)=2zp+Uu(x,y,z). (2.7
at a scale dimension of the order ofgdn and larger. The
modulated(helica) structure occurs as a result of a preces- We choose a space-fix¢8F) frameS° such that itw axis
sion of the molecular tilt about an axis perpendicular to theis along the normal to the unperturbed smectic laysee
layer planes. The tilt direction is rotated through an azi-Fig. 1. The system is described Iy the angle€), of direc-
muthal angle on moving from one layer to the next. As the tor ¢ with respect to thex axis and(ii) the vertical displace-
rotation is in a constant direction, a helix is formed, which ismentu of the layers whose derivatives
either left or right handed. In Si8* the mirror plane is lost
but theC, axis is present locally in each smectic layiris Q _ou and O — — au 2.2
perpendicular to the plane containing the molecular axes Xy y X '
The C, axis in the case of SM3* phase is a polar axis,
which admits the existence of a spontaneous polarizatiofepresent small angles of rotation abaw@#ndy axes, respec-
along it. The SnE* phase therefore exhibits ferroelectricity. tively.

Many compounds exhibit phases such as antiferroelectric Since the free energy of a system with broken continuous

(SmC?), ferroelectric(Sm-<C}*), etc. in addition to Sn&*, symmetry is invariant_ with respect to spatially uniform dis-.
placements and rotations that take the system from one point

as the temperature is varied. The direatom the SMEX  in the ground state manifold to another, the elastic free en-
phase, like in SnE* phase, is uniformly tilted with respect gy must be a function of derivatives 6f or second order
to the layer normal. However, unlike in S@* phase, the gerivatives ofu, which correspond to the curvature of the
difference in azimuthal angle of in successive layers i8  planes. The contribution to free energy density due to defor-
+a. The small angler gives rise to a helical structure of  mation is called elastic free energy densityr). To find
along the layer normal and arises from the chirality of thef (r) one expand$(r), which belongs to the deformed state
constituent molecules. In S@7 the layers are stacked in around the ideal state having the free energy derigityThe
such a way that there is a net over@f contrast to S} expansion is expressed in terms of the spatial derivative of
phasé spontaneous polarization. This means the number ofhe order parameter fields. The elastic continuum theory
layers of opposite polarization is not equal. The elasticitydeals only with small spatial derivatives. Consequently, only
associated with the structure of all chiral smectic phases i€ lowest order terms in the expansions are taken into ac-
same as that of Si8* phase. count. _
The paper is organized as follows. In Sec. Il we describe B€cause of the symmetry of S@ithe free energy density
the elastic continuum theory for S@-and SmC* phases must be invariant of the simultaneous transformations
and derive expressions for the elastic free energy density.. . <Y Y andz— —z (due to center of symmetrand

This expression is then written in terms of deformation vari-Of the transformatiory — —y as the verticakz plane is the

ables so that it becomes appropriate for comparison with aRIane of symmetry. Thus for the elastic free energy density

expression found from microscopic theory. The density-one Nad4]

functional approach has been used in Sec. Il to describe the
deformed state of smectics with tilted orientational order.
The expression for the deformation free energy density de- heref i ributi ising due to distorti f
rived here is more general than that given in | in the sensgv_ €relac rep_resen S contr u lon arl.smg ue to distortion o
that all the cases discussed in | correspond to tilt angle equélirector ¢ while fq is associated with curvature of layers.
to zero. The expressions for the elastic constants are derivedck Fepresents the contribution arising due to coupling of
by comparing the elastic free energy found from the densitydifferent deformation modes wheregg represents the con-
functional theory with that given in Sec. Il. These eXpres_tnbunon due to variation in layer thickness as in @mfhus
sions of the elastic constants involve the order paramete

that measure the nature and amount of ordering in the system

and the direct pair correlation functidbPCH of an effec- _E— 2

. . e e . . fdl_ B’y, (24)
tive isotropic liquid. In Sec. IV we discuss the relative mag- 2

nitude of these constants using reasonable guesses for the

order parameters and the spherical harmonic coefficients afhere y=du/dz describes the variation in the thickness of
the DPCF. layers.

fo(r)="fgae(r) +fae(r) + faer) + fa(r), (2.3
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To derive expressions fofy., fqx, fqck We consider a
director triad formed by three orthonormal unit vectars

k, p and let, at the origin, the directarbe along the axis of

PHYSICAL REVIEW E 64 051705

Note that the invariant® ;; and D 5, correspond to varia-
tion of layer compressioffor dilation) alongy and x axes,
respectively,

the SF framek alongz axis, i.e., along the normal to the Qy d%u dy R

layers, and alongy axis, i.e.,

C=(1,0,0, pPo=(0,1,0, ko=(0,0,). (2.5

The orientation of the director triad at a neighboring point

D31:—¥:—M:—W:—p.v»)/,

Do 9y _ Fu dy 2 v 01
2T 57 T T axoz ax . OVY (210

is rotated with respect to the space-fixed coordinate framgpage terms are omitted as their contributions are small com-

due to deformation and is given as

c=(1Cy.C,), P=(Pxlpy), k=(kcky1). (2.6

Because of orthonormality condition of the director tria

Px=—Cy, pzz_kya C,= — Ky 2.7
For small deviations we have

ou ou

k== 35 =0y k== ==0 (29

and
cy=10,.

Combining the three orthonormal vectarsk, p we can

pared to linear terniy [see Eq(2.4)]. We are therefore left
with six independent invariants.
The elastic free energy density due to orientational defor-
d mation of SmE can be written in terms of these six inde-
pendent invariants. Each term should, however, satisfy the

symmetry elements of Si@: Note that k,c) plane is a sym-

metry plane,fJ is C, axis, and there is also inversion sym-
metry. We can therefore write elastic free energy density as a
sum of the square of each invariant and their products taken

in such a way thak and ¢ enter the expansion an even
number of times(i.e., k and ¢ are considered without dis-

crimination, andp also appears even number of times but on
its own. Thus

1 1 1
fac=5B1D1s+ 5BoD35+ 5 BsD3s+ BigD1gDas,

form nine invariants. The elastic free energy density can be (2.11a

expressed in terms of these invariaft$
A a0,
D11=cC,pgdokg=c-Vk-p=— o
o a Q0
DZl:papﬂé’akB:p'Vk'p:_ ﬁy ’
L 90y d%u
Da1=KaPpdokpg=k-Vk-p=——">=———,
o a Q)
D12=cakﬁaacﬂ=—c~Vk-c=—a—X,
A aa aQy,
D22=pakﬁaa05=—p~Vk~c=—W= 115
L. a0y,
D32— kakﬁﬁacﬁ__k V C__W__ﬁyﬁz,
o aa 00,
Dl3 Cacﬁ&apﬁ —c-Vc p=- EVe
I o0,
D23=PaCpdaPp=—P-VC-P=— 77,
P Q,
D3s=K,Cpd,pg=—k-Vc-p=— o7 (2.9

1 L1, 1
fdeEA(D11+ Doy + §A12D12+ 5A21D%,

2
(2.11H
fack=C1D 11D 13+ CoD 21D o3+ C3D 15D 53+ C4D 15D 5.
(2.119
Since
o [P (90 _ (a0 [ a0y
2223 g oy ) oy T ax ) ax\ TP gy
0, 00,
Xy (2.12

it is the sum of two gradient tern{surface termsand a term
analogous toD;D3. Similar decomposition can also be
made forD,D,;. We therefore have only two independent
terms in the expression df;;, due to coupling between the
deformation of directoc and the curvature of smectic layers,
as given in Ref[4].

Sincef 4 involves directorc, it can be written in terms of
(V-0)2, (c-Vx0)2 and XV xc)? as

2
=D2,, (2.13

d
.A 2: Z
(V-0 oy

R . 9Q,\?
(c-vxc>2=( &ZZ) =D3%s,

051705-3



YASHWANT SINGH AND JOKHAN RAM PHYSICAL REVIEW E 64 051705

. . 90,\? 5 therefore be considered to be a contribution due to deforma-
(CXVXC)ZZ( X ) =D1s, tion from this uniform helical structure.
The expressions for the elastic constants are obtained by
comparing the expression of elastic free energy density ob-
tained from the continuum theory and from a microscopic

and

R L A a0\ [ 90, theory involving molecular parameters. In order to make this
(k-VXc)(c V><c)=( I )(E) =D3Da3. comparison possible we have to rewrite E2.16) in terms
of distortion vectors defined below.

_ - Since in the ground state, the directors are position inde-
Therefore the constanB,, B, Bs, Bz can be identified ndent, we tak&® to be the unperturbed director frame at a

as elastic constants associated with bend, splay, twist, argogint R Let & be described by the unit vectoN{)j) such

coupled twist-bend modes of deformations of direct@nd that[see Eq.(2

have the dimension of energy per unit lengtlynes. The [ a(29]

last term in !Eq(z.lla) is allowed beciuse sp is |rA1var|aAnt N(()l):éo’ N(()Z): [30’ N((f): RO. 2.17)
under the simultaneous transformatior> —n andc— —c.

These constants are expected to be comparable in magnitudelLet S be the perturbed director frame described by the
to the Frank elastic constants of a homologous nematicnit vectorN®) such thafsee Eq(2.6)]

phase.

The contributionf 4, is analogous to Snk-and is due to NO=c=cy+ oV, N®=p=py+?),
layer deformation(curvaturg. The termsA, A;,, and Ay, o
represent splay contribution of system of monoclinic symme- N®=k=ky+ o®, (2.18

try as SmE hasC,;, symmetry in contrast t®..,, of Sm-A. 0 ] ]
The value of these constants are therefore expected to be Whereo'”’ may be regarded as the distortion vectors, and let

the same order of magnitude as in Shphase.B_[see Eq. N =NO). N = 5jk+(,|((1) (2.19
(2.4)], which has dimensions of energy per unit volume, is
associated with possible change of interlayer distance.  be the components of the perturbed directors with respect to

Since SmE* has no inversion symmetry, its elastic free S frame.
energy density may have terms Iinear.in invariants of EQ. The transformation fron8° to S is effected by a X3
(2.9. However, due to symmetry requirements only thoseprthogonal matrixT with element
invariants that involvek andc in pairs without discrimina-

A C=NW =5 ()
tion, andp alone contribute to linear terms. Thus Tik=Ni’= G+ o

(1) A A a A~ A N A such that
fg’'=—Da(Cc-Vc-p)+Dy(p- VK-c)—Ds(k-Vc:p), | ‘ |
(2.14 ND =T, N =ND + o{INE .

where superscript 1 stands for linear terms. In term€)of The orthogonality conditio; Tj= &j« leads to
vector field

o-l(k)———a(kj)—aj(i)a'(ki) for j#k,
fgl)_Dl( Z)—l—Dz(—x +Dj Z). (2.19 j > ol j=k
X X 0z O-J(J)—__ : O'J(I)z for J ’ ( '

Out of the three terms in Eq2.15 the termD3 is most
important as it corresponds to simple twist of direatohe
term D, corresponds to bend of directowhile D, tends to

where the prime on summation indicates no summation over
j. Thus for small deformations

transform a flat layer into a twisted ribbon. The termsand (,—J(k)~o and gj(i)~02,
D, are expected to be negligible in comparison to e
term. whereO means first order small quantity.
If gqo=—(D3/B3) whereB; is defined in Eq(2.113, the From above relations it follows thats", o{*, ando{®
contributionf 4.(r) for Sm-C* is modified to can be regarded as basic independent distortion variables; all

as a function ofR. Every other component can be con-

1 (d0,\%2 1 [aQ,\% 1 _[dQ, 2 structed with the help of Eq2.20).
fac(r)=5Bs| -] +5B2 oy T 7B3| 7, T From above discussions we find
oQ,\ [ 9Q c,=Q,=ao8",
+ B3 _Z)( Z), (2.1 y-Trz e
ox |\ oz 2
ke=Qy=0c{¥,
while other terms of Eq(2.11) remain same. The ground @)
state of SmE* has a helical structure. ThB; term can ky=—Qy=—03". (2.29)

051705-4



MOLECULAR THEORY OF ELASTC ... .IIL.

Using these relations we rewrite E@.11) as

1 (o2 1 [o0t\? 1 [d0fM)\?
EBl< X ) +§BZ( ay ) +§B3< 9z )

FdC: f dR

070'(21) (3’0(21)
+ B3 W 97 s (2.223
1 (90?1 [00P)\?
Fa= f dR[zA( o *zAlz(W)
1A r?a'gz) i 2.22
P vl (2.22h
F de c (?0'%2) (90'(21) c r?a'gz) (90(21)
dek™ N ox ax | 2 ay ay ||
(2.220

PHYSICAL REVIEW E 64 051705

i.e., an abrupt change may take place in the symmetries of
the system. The molecular configurations of most ordered
phases are adequately described by the single particle density
distributionp(x). The vectorx is taken here to indicate both
the locationr of the center of a molecule and its relative
orientation ) described by Euler angle$, 6, . For an
isotropic uniform systemp(x) is independent of positions
and orientations.

The single-particle density distributign(x) provides us
with a convenient variational quantity to specify an arbitrary
state of a system. One may consider a variational thermody-
namic potentiaW/(T,P,[p(x)]) as a function ofp(x). The
equilibrium state of the system at a givé@nand P is de-
scribed by the density(T,P,Xx) corresponding to the mini-
mum of W with respect tgp(x). This forms the basis of the
density-functional theory2].

The basic thermodynamic potential used to determine the
isothermal elastic properties of a system, consistingNof
particles in volumeV at temperaturd, is the Helmholtz free
energy Al p]. Elasticity is associated with the behavior of

It is often convenient to assume long wavelength deformaA[p] with respect to a small deformation of the system away

tions in the space-fixed frame having the form

o=B{ sin(q-R), (2.23

where B(kj) are small amplitudes ang is the wave vector.
Substituting this into Eq(2.22 leads to

Fac 1
~oe — Z1By(BE) 02+ BB 202 + By(BE)%q?

+Bi3(BSY)2q,4,], (2.243

Faw 1
~ = 2l ABE)ZAT A(BEY) a5+ Ayy(BEY) %],

Vv
(2.24h

Fack
V

1 1
=5 Cu(BYBEY) i+ 5 Co(BEIBE) o
(2.240

In writing the above equations we have used the relations

f dRSinZ(Q'R)=JdRco§(q-R):¥
and
desin(qR)cos(qR):o.

[Il. DENSITY-FUNCTIONAL APPROACH

A. Expression for the distortion free energy

from its equilibrium(ground state[1].

In the density-functional formalism the free energy of a
system is expressed in terms of the direct correlation func-
tion of the mediun{2]

BALp]=BAiglp]+ BAA[p], (3.9
where the ideal gas part
BAdlp1= | dxp(0 p0AT-1) (32

andBAA[ p] is the excess reduced free energy arising due to
intermolecular interactions. Her@=(kgT) ", wherekg is

the Boltzmann constant and is the temperature. In the
weighted density-functional approach

1 _
BAA[p]=— 5] dxlf dX, p(X1)C(X1,X2,p) p(X2).
(3.3

Here the functiorc represents the DPCF of an effective iso-

tropic fluid. The effective densit;is found using the rela-
tion [6]

— 1 _
pLp :po_V X1 | OXz2 p(X1) p(X2) 0(X1,X2;p),
[p] dxg [ dXz p(X1) p(X2) o ) s

wherep, is the averaged density of the ordered phaseaand
is a weight factor.p[p] is viewed here as a functional of

A liguid crystalline phase is characterized by the spatialp(x). To ensure that the approximation becomes exact in the
and orientational configuration of molecules. At the phasdimit of a uniform system, the weight factes must satisfy
transition point these configurations undergo a modificationthe normalization condition

051705-5
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j dx, w(Xq,Xs ;;) =1.

Requiring thatw must satisfy

S*(BAA)

A

—c@(x1,%2;p0) = lim
p—po

exactly, one finds

_ _ 1— _
o(X1,X2;p) = — B te(xq,Xa5p)+ vPAa"(P) ,

(3.6)

2Aa’(p)

where Aa(;) is the excess free energy per particle and

primes on it denote derivatives with respect to density.

The contribution to the free energy due to deformation is

given ag[1]

BAALp]=B(AAdp]—AALP])

1
_ Ef dxlf dXa[ pa(X1) pa(X2)

— p(x)p(X2)1e(X1 , X2 p), (3.7)

where BAA [ p] and p(Xx) are, respectively, the excess free

PHYSICAL REVIEW E 64 051705

o= CIAALp] PV V)],

whereV, is the volume of the deformed sample aRdhe
isotropic pressure.

For an ordered(liquid crystalling phase,p(x) is ex-
pressed in terms of the Fourier series and the Wigner rotation
matrices[2] as

p<x>=p<r,ﬂ'>=po§ % Qimn(G)exdiG 1D}, ('),

(3.93
where the expansion coefficients
2l+1 , ,
Qe @)=~ ar [ @ pir.0)
Xexp(—iG-r)Di¥(Q"). (3.9

Here {G} are the reciprocal lattice vectofRLV'’s) of the
positionally ordered structure that might be present in the
system angbg is the mean number density of the system. All
the angles that appear in E¢3.9) refer to a coordinate
frame, thez axis of which is along the directar. Using the
rotational property of theD matrices[7], we rewrite Eq.
(3.99 so that all the angles appearing in it refer to the space-
fixed coordinate frame shown in Fig. 1. Thus

energy and single particle density distribution of the groundp(r,€)= pOE E 2 Qimn(G)eXHiG- 1Dy Dy ().

state of the ordered phase. The subsatiptfers to the cor-

(3.10

responding quantities of the deformed state. In writing Eq.
(3.7) it is assumed that the direct pair correlation functions
do not change due to deformation.

Since the isotropic fluid DPCF is an invariant pairwise
function, it has an expansion in the SF frame of the form

In the limit of long wavelength distortion, the magnitude
of the order parameters is assumed to remain unchanged. The
changes occur in the direction of the directors, making them
position dependent, and in the RLV@G. The RLV's G4 of
the strained structure are related3mf the unstrained struc-
ture as

o(r,Q,Q)=2> > X

I1lol mmom nyn,

Gy=(I+€) 1G. (3.12)

Xc(lq,lz,15n1,n551)Cy(ly,15,15my,my,m)

Heree is a strain matrix that governs the change in position.

I 3
x Dml'nl(Ql)D Thus for a deformed state,

n,(22) Y (), (3.8

whereCy(l4,l5,1;m;,m,,m) are the Clebsch-Gordon coef-
ficients,c(l4,l,,l;n,n,;r) is the harmonic expansion coef-
ficient of the DPCF, and=r/|r| is a unit vector along the
intermolecular axis.

The elastic constants are defined by the second-order term R
of the expansion of the free energy of the deformed statavhere ny(r) indicates the direction of director atof the
around the free energy of the equilibriufground state in  deformed state. In the deformed state, the director orienta-
the ascending powers of a parameter, which measures thiens become position dependent. One uses the rotational
deformation. The first term of this expansion is balanced byproperties oD matrices to rewrite Eq.3.11) in terms of the
the equilibrium stresses of the ground state. One defines thdirector of a chosen point. Substituting E¢%.8)—(3.12) into
elastic free energy per unit volume as Eq. (3.7 and after some simplifications we get

pd(r,ﬂ)=p0% % % Qimn(G)

Xexp(iGy-r)D m(nd)an(Q) (3.12

051705-6
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BAAg

Qllm’nl(G)Ql m.n (_G)
Pl_ 2iS S S 3y T

I115l mlm 'm/ MA niny G (2|1+1)(2|2+1)

X Cy(l415l;mim'\) D (N) fdr[exp(led r)D2, ,(AX)

—5m,méexp(iG-r)]c(I1I2I;nlnz;r)Y,*m(F), (3.13

wheren indicates the orientation of the director at the reference giahdA y indicates the angle between the directors at
R andR+r. Equation(3.13 presents a general expression for the distortion free energy density for the continuous symmetry
broken phases with tilted orientational order in the limit of long wavelength distortion. Since for uniaxial phases the director
is along thez axis of the SF coordinate framB,% (n=0)= 6, . When this is substituted in E¢3.13 it reduces to Eq(3.9)
of I.

Equation(3.13 can be used to derive expressions for the contributions arising due to curvature in the director orientation
and dilation in layer thickness. The term that represents the coupling of these two terms of distortions is neglected. Thus

BAAG
Vv

:f1+f2, (31®

where

Qllminl(G)leménz(_G)
32 > 2>

12| mlmzm, m\ nqiny G (2|1+1)(2|2+1)

Cy(l4lol;mim'\)
~ . 1* N
xD'rTfA(n)fdrexp(|G~r)[Dr§,m,(Ax)—5m/mé]Y|*m(r) c(l4lolinny;r), (3.15
2

Qllminl(G)leménz(_G)
2= 32 > 22>

12| mlmzm, m\ nqny G (2|1+1)(2|2+1)

Cy(l4lol;mim'\)

><D'* (n)f driexp(iGq-r)—expiG-r)] 8 er (r)c(lllzl NNy ;r). (3.16

While f4 includes all contributions arising due to curvature in directors orientatignis, the contribution due to dilation
(compressiohin layer thickness.

B. Expressions for the elastic constants associated with directors orientations

All the elastic constants associated with curvature in director orientations can be derived from the exprdssiveafin
Eq. (3.15. Using the procedure outlined in Il we rewrite E§.15 in terms of the director components. Thus

N| =

f1: -

Qllmn( )lem n,\
EOMEDIEIDIDY x<n>jdrrjdr

I41ol m;mym’ mx nin, G (2|1+1)(2|2+l)

1 N A A A “ o~
X E|B(13)|2{(311+312)(Q§_Q>2<)(r'X)(r'Z)+(az3+321+a22)[(1§(r'X)2+ -1}

1 A A~ A A I
+ 5B i(ar,~ 1) a5(T-Y) (7-2) + (5~ 81— ) [GX(T - X)*+aj(r-y)*+ - -1}

IB‘”I [.b (92— a2 (r-X)(r- y)——b[qx(r X)2+03(1 - y) 2+ 021 2)2] = b3a,0x(T - 2) (T - X)+ - -
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1 ~ A ~ A i A A
+BYIBE - Z(antan)ai(f- 0>+ i1 -y)°+ -]+ 5 (@u—ap) (G- g (F-X) ([ -y)+ -]

ib A A A n 1 ~ n IR
+ S U= A (P (-2 + 1= 3 my(an—a) GG -R2Hap( )2+ T+

xexp(iG-r) Y (Nc(l4l,l;nn,;r), (3.1

where b1 =myCqy(l4ll;my,m5,N),

1
ay=— E{(|2+ my+1)(I,—my)}2Cy (141 ;my ,my+ 1),
boy=my*Cy(l4l,l;my,mjy,\).

1
a12=§{(lz—mé+1)(|2+mé)}l/2Cg(I1I2I;mi,mé—l,)\), . _ o _
Since the plane wave ex-r) travelling in thez direc-
1 tion (because of the layered structure of smectic phaises
== {(lo+m}+2)(I,—my—1) (1,4 mp+ 1) (1,— m)) 172 symmetrical about theaxis and can be expanded as a series
8 of Legendre polynomials referring to this axis,

X Cy(lqlol;my,my+2)),

1 , , , , eiCZi2= D'(21'+1)j,(Gr)P,.(cosh), (3.1
0= g (1o~ M+ 2) (1 My = 1) (1= M+ 1) (I+ mp) 2 2, ()27 +D)j(G)Py(cost), (3.1
X Cy(l4lol;my,my—21),
wherej;.(Gr) are the spherical Bessel functions ahis the
angle between the axis and intermolecular axis
After performing the angular integration ovemwe com-

pare the resulting expression with E§-24) and obtain the
following expressions for the elastic constants.

1
A=~ §{(|2+mé)('z_mé+1)+(|2_mé)(|2+ m;+1)}

XCg(|1|2|;mi,mé,)\),

o N@l'+1)
BBlz_P(%\/EE E E E E ) (2|1_:1)(2|2+1) Q|1m1/”1(G)Q|2mé”2(_G)

Iloll” mim; M\ ninz G

% 2y qM1n2 bzl 2I'+1 12 ’ ’ ’
XD (NI, e C4(211;000){Cqy(21"1;202) 8y — Cq(21"1;202) Sy}
b, 21/ +1\¥" ) 3f2l'+1\*"
—? 5||r5m0— m Cg(2| [;000) 5m0+ E m Cg(2| [;000)
x[cg(2|'|;202)5m2+cg(2|w;gog)émg]]}, (3.19
BB=fdm S S S S S () e Qi (G)Q (O
N i W, S D@D anins e
1% 2~y qM1n2 b21 21'+1 vz ’ ’ ’
XD (M7, GEER C4(21'1;000){Cy(21'1;202) 8pp— Cql21"1;202) 5o}
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1/2

bao 21+1\* \F2|’+1 -
+ — 6 Ol Omo— 2141 Cg(2| [;000) So— E(m Cg(2| 1;000)
x[cg(2|'|;202)5m2+cg(2|’|;gog)5mg]]}, (3.20
o " J@l'+1)
ﬂsg—pm—llgw m2mé 2 2 2 6 D, D Qi G~ C)
e A 20+1\ 2
XDy (M3 b2g G0 dmo+ 2| 5| Cyl2171:000021), (3.21)
;o N@r+n 1
__ 2 N
/8813 pO\/EHIEz”’ m%é % nlznz 2 (I) (2|l+1)(2| +l) 2\/— lelm “1( )
X Q1 mgan,(— G)D (M IT b2:Cy(2171;000)[Cy(211;101) Sy + Cy( 2171, 101) 5y ], (3.22
JeI'+1 1

BA=—po\am > X > > 2 (i )l/(2| +1)(2|2+1)3(323 821~ 22) Q1 m!n, (G)

Ilpll” mimj M\ N1N2
nn, 21" +1\1? 3(21"+1\1?
XleménZ( ) )\(n)‘J| |2||/ 5II’5m0_ m C (ZI l 000) 5m0+ 2 2|+1
><Cg(2l’I;OOO){Cg(ZI’I;202)5m2+Cg(2I’I;gO%)&mg}}, (3.23

(217+1)

__ 2 I
BAu=—piVAm 2 2 2 2 2 (0" o, gy Qumin (G Qumyn,(—G)
12t mym;
- 21"+ 12
1% e e e
XD (M2, f 2|+1 (83155 Cq(21'1;000){Cq(21'1;101) Sy + Cy(21'1;101) Sy}

1 201\ \F 21'+1\¥”
+§(a23+a21+a22) (S”/(Smo_ m Cg(2| |,000) 5mo+ E 2|+1 Cg(2| I,OOO)
x[cg(2|'|;202)5m2+cg(2|w;gog)amg]] , (3.24)

V(2I'+1)
—_ 2 I’
BRa=—ppVAm 2 2 2 2 X () Gy ) Quminy(©)Qmn(—C)
141511 m;m, 12

1% Nz 1 (21'+1)%2 ’ ’ ’

XD (I, BT (812~ a17)Cq(21"1;000){Cy(211;101) Sy — Cq(21'1;101) 5y}

1 2 +1\* \F2|'+1 ve o
+§(a23—a21—a22) 111 0mo— m Cg(2| [;000)“6m0— E m Cg(2| [;000)
x[cg(zl'|;202)5m2+cg(2|w;gog)émg]] , (3.29
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2
povaT Ny V(21" +1)
C,= i) (G n(—G
BC1=— Ila%é% 2 2 0 Gryan, 1) Qumind ©)Qumyn(—C)
I% ~y qM1N2 1/2I"+1 v - . -
XDm)\(n)‘]lllzll' % I (a1~ a1 Cy(2 |,OOO){CQ(2| 1;202) 6my— Cy( 21 I,EOZ)(‘)‘mZ}
11 , 21/ +1\¥" ) 3fal'+1\*"
—§ E(a11+a12)+m2(a11—a12) O\ Omo— m Cg(2| [;000)° S5m0+ E m Cg(2| [;000)

x[cg(zl'|;202)5m2+cg(2|w;gog)amg]] : (3.26
2
poVam Y V(21'+1)
Cor=— | (G ! -G
BC; 5 l%ﬁ%ﬁ% 2 2 0 Gy, Qumind ©)Qumn(~6)
% 2y qM1N2 1(2I'+1 vz ’ ’ ’
XD (MIT NGRS (211812 C4(21'1;000){Cy(21'1;202) 5o~ Cy(21'1;202) 51}
11 , 21'+1\2 ) 3[21'+1\2
+313@utan) +myan—an) (| g dmo—| 5777 | Col21'1:000%8m0— \/5| 5777| Ca(21'1:000)

!

1 12
m Cg(2|'|;OOO){CQ(2|'|;101)5m1

1
X[Cy(21'1;202) 5+ Cy( 2 w;gog)amg]J — —=myCy(2l ’I;mimé)\)(

V6

, (3.29

—Cq(21"1 ;101)5,“1}
where

s :f dred jUGrc(llolingn,:r)

1/2

are the structural parameters. A line under a number denotes 1 1 _
a negative quantity. Equatiofi3.18—(3.26) give general ex- ®1=£ Q2= ~ zQu=|5| (sinfcosdcose),
pressions for the curvature elastic constants of theCSand (3.28h

other phases of this class in the long wavelength limit. From

these results one can obtain expressions for the elastic con- 1o

stants of a given phase by using the appropriate order param- :E :E _ §) .

eters corresponding to the phase. ©2=5 Q=5 Q2= |3 (sin6cos 2). (3.289
The structures of smectic phases are characterized by

three different class of order parametdigorientationalii)

positional, and(ii ) mixed[2]. In general there can be upto While P, measures the degree of alignment of molecular

(21+1)? orientational and so many mixed order parameters,‘?hx'S alongt;_ thel directam, \;g"Ch r(;’nakes a nonz?rzo 3ngle W't?
of rank| for a given value of the reciprocal lattice vect®r € SmectC plane norman, andw, measure the degree o
alignment along the directar and the biaxial ordering. The

One uses the symmetries of the phase and of the constituent S . :
. . A angular bracket indicates the average over the orientational
molecule to reduce this number. Since 8nphase is biaxial

) . . ) istribution.
with point symmetryC,,;,, we choose the following orienta- distributio

tional order parameters bt 2 level (molecul ; med For positional ordering one may choose as in the case of
onatorcer parameters evelimolecules are assumed g, A phase, one order parameter corresponding toG,
to be cylindrically symmetric

=2a/d whered is the layer spacing in equilibrium. Thus

— 1
P2=§Q20=<P2(cosa)), (3.283 ,u=Qoo(G)=<COS 27T§>- (3.29

051705-10
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The coupling between the positional and orientational or-  C,=M qsirfy+ My (1+ cosg)?+ My 1— cosy)?
dering may be described by the order parametegrsr,, and

73, Where —M7Sing+ Mozsing cosy+M,,. (3.31))

1 27 Here is the tilt angle. The directons andc of a uniform
Tl=§Q20(G)= < cosT Pz(cosa)> ,  (3.308 phase are assumed to be ip m_EpIane. The expressions for
the constant#!,; to M,,, which involve the order and struc-
1 1 tural parameters _and are, therefore, temperature and density
To==Q(G)=— =Q,y(G) dependent, are given in Appendix A. In writing these expres-
5= 5 sions we have taken into account the fact that, for a system
of rigid axially symmetric molecules);=n,=0 and

3 1/2 277 .
=3 cosT sinfdcosfcosg ), (3.30h

1
c(l41,1;00;r)= E¢(2|1+ 1)(2lp+1)¢) ().
(3.32

The structural parameters are connected with harmonic
coefficientsc|1|2| as

1 1
Tangzg(G) = ngz(G)

3 1/2 277.2 .
:(5) <COST sirfd cos 2¢>>. (3.300

2 )
J|1|2|(0):\/%f0 drricy,i(r) (3.33

Using these order parameters we give below explicit ex-
pressions for the curvature elastic constants forGphase

consisting of cylindrically symmetric molecules; and
2
B1=M, Sirfy+ M, cosy+ M, 3.31 Po 7. 4
1= My simy Mz cosg My (3.313 Jiyr= \/Tfo drrji (Gre,(r).  (3.34
ar
B,=Mysirfyy— M, cosy+ Mg, (3.31b
Our results, given in Eqg¥3.31), show that for cylindri-
Bs=Mgsirfy+My, (3.319  cally symmetric moleculeB,;=0. This is, however, not true
in general. For molecules with broken cylindrical symmetry,
Bi5=0, (3.310 B3 will be nonzero. Its magnitude, however, appears to be
small compared tB;, B,, and B;. Madhusudana and co-
A=Mgsirfy+M,, (3.318  workers[8] have foundB,5/B;~0.3
A1o=MosiPy+ My, (3.31 C. Expression for the elastic constanB
. As mentioned above the expression for the elastic con-
Ay=M,Sirf g+ Mg, 331 —. : . :
21= MaaSInTy+ Myg (3319 antB is derived from the expression ¢ given by Eq.
Cy=M 1, Sirfy+ M yo( 1+ COSt) 2+ M (1 — coSh)? (3.1_6). Since Sm@: as well as Sne* have ene-dlmenemnal
positional ordering in addition to orientational ordering we
+M7sing+ M igsing cosy+ Mg, (3.31  have

B 1 5 Qllminl(g)leménz(_g)
f=—5002 2 2 %E (21, +1)(20,+ 1)

[N ror
128 mymym

Cy(l4lol;mim"\)

X D'n’{}\(ﬁ)J’ dr[exp(iGuzio) — exp(iG219) 1 Smrmy €115l ;N1 NYFE(r), (3.35

whereG=2wk/d andGy=2wk/d.; d. andd are the interlayer spacing of the distorted and undistortedCSand SmeE*)
phase. Using Eq.3.11) we expand the above equation_in ascending powers of the dilation paraswedgfd—1. The term

associated with (1/2Y defines the bulk elastic constaBt Comparing Eq(3.35 and with Eq.(2.4) we get

_— kT 2 Qllminl(g)leménz(_g) L
B—7Po = |2 2 , %; n%z 211 1)(20,+ 1) Cy(l4lol;mm’N)

[N} ot
128 mymsm

X D'njk(ﬁ)gzj dr Z2,exp(iGz)c(l4],l;nn,;r) YE(T). (3.39
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Using Eq.(3.18 we have

= kTpo L Qllminl(g)leménz(_g)
~76 VT2 Eu m%m ) n%(') (21, +1)(21,+ 1)
- e ’ 1/2
><g2(2|'+1)1’2D'm(n)cg(|1|2|;mgm'x)Jllllzﬁ, S +2 m) cg(2|'|;000)2}. (3.37

As shown in |, the term proportional te in the free termolecular potential energy depends upon only the position
energy expansion gives the condition for the interlayer spacef the center of mass and on their orientations. This kind of

ing. In terms of the order parameters given by E§s29—  approach neglects the flexibility of molecular structure,
(3.30, Eq. (3.37 can be written as which plays an important role in the stability of many liquid
crystalline phases. In view of various complexities in the

,8§=Llsin21//+ L,siny cosy+Ls. (3.39 intermolecular interaction one is often forced to use a phe-

nomenological description, either as a straightforward model

The expressions fdr;, L,, andL; for a system consist- Unrelated to any particular physical system, or as a basis for

ing of cylindrically symmetric molecules are given in Ap- describing by adjustable parameters fitted to experimental
pendix B. data for interaction between two molecules. Most commonly

used models are hard ellipsoids of revolution, hard sphero-
cylinders, cut sphergl0], and Gay-BernéGB) [11]. How-
ever, none of these are known to show the existence 0€Sm-

In order to estimate the values of elastic constants giveRhase.
above we need the values of the order parameters, general- The computer simulation studyi2] shows that the GB
ized spherical harmonic coefficients of the direct pair corremodel exhibits SmA and SmB phases. The GB potential
lation functions of an effective fluid as a function of tem- contains four independent parameters that control the anisot-
perature and density, and the information about theOPY in the attractive and repulsive interactions and can be
constituent molecules, viz., electric multipole moments, geWritten as
ometry of the repulsive core, length-to-width ratio, etc. as 12
input parameters. L 90
Since in the limit of long-wavelength distortions the mag- u(1,2)—4e(r,ﬂl,ﬂz)[ | r_O-(F,Ql,QZ)_q_O-O]
nitude of the order parameters are assumed to remain un-
changed, the value of the order parameters at a given tem- oo 6
perature and the density may be either determined T (F.0,.0,)+
experimentally or calculated from a theory. Thlarmonics gil2E,352) T 00
for a given system can, in principle, be found either by solv-
ing the Ornstein-Zernike equation with suitable closure rela-,
tions [6] or by adopting a perturbative scheme, which is
based on the fact that the fluid structure at high densities is
primarily controlled by the repulsive part of the interactions. (1, Q,,Q,)
However, such calculations for nonaxial molecules are very
complicated and may need enormous computational efforts L
to generate reliable data ferharmonicq9]. =€l 1—x%(er &)
The difficulty that arises in applying the theory to real
systems is related to the potential energy of interaction be- 2 2
t\%een mesogenic moleculees. The mesggyenic molecules are (r &)’ + (1 &) 2x' (- &) (1-&) (& 62)] ,
large and have groups of atoms with their own local features. 1- X’z(e e2)2
One way to construct the potential energy of interaction be-
tween two such molecules is to sum the interatomic or siteer(r, Q,,Q0,)
site potential between atoms or between interaction sites.
However, for mesogenic molecules there are too many terms 1—
in this sum to be practical. Moreover, the dependence of — %o X
interaction on molecular orientations in this expression is
implicit so that it is difficult to use it in the calculation of (r )2+ (r-8)2—2x(r-€)(r-e)(e,- &)
angular orientation, which gives rise to liquid crystals. 2
In another and more convenient approach one uses rigid 1-x*(& &)
molecular approximation in which it is assumed that the in- 4.2

IV. DISCUSSIONS

4.1

Here €(r,Q,,Q,) and o(r,Q;,Q,) are angle dependent
strength and range parameters, respectively, and are defined

!

2]71/2 1_X

-1/2
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whereél andéz are the unit vectors along the symmetry axes
of two interacting moleculessy and oy are parameters that

PHYSICAL REVIEW E 64 051705
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of the molecule. The anisotropy parameteand y’ are de-
fined as

k/l/2_l
k11/2+ 1 !

2
Xg—1

X:
x5+1

and y'=

APPENDIX A

In this appendix we give explicit expressions for the co-
efficientsM ; to M,, in units ofkgT/ o [see Eqs(3.31)]. As
is obivious from Eqgs(3.19—(3.27), they involve order and

structural parameters of all orders. We list only first few

wherex,=2a/2b is the lengthimajor axig to breadth(minor
axis) ratio andk’ is the ratio of the potential well depth for
the side by side and end to end configurations. We have
taken herexy=3.0 andk’=5. The harmonics were gener-
ated by solving the Ornstein-Zernike equation using the
Percus-Yevick closure relatidd3]. Using these harmonics

we have calculated the values of the structural parameters at
kgT/€,=0.8 and the packing fractiony=(/6)Xopoog
=0.49. The values of few structural parameters @&t 0

and G=2m/xy=2.0944 so obtained are as follows:

J5d0)=2.23174,  Jogoo= —2.78902,
J5040)=0.33324,  Jgpo= —4.61192,
Jo4(0)=—4.022 96, Jpgy=0.075 39,
J5440)=0.30951,  Jyg— —2.058 25,
J2a40)= —1.062 09, Jygp= —0.56503,
J4ad0)=0.49893,  Jpyo=0.13322,
Jasd0)=—0.09114, Jyyp=0.6818,
J4ad0)=0.13077,  Jypp= —0.493 32,

Jopp— —0.006 27,
Joo4=0.177 76,
Joao=0.540 22,
Joazo= — 0.258 49.

Since the values of the order parameters are not known,
we assume them to be equal to 0.5 to estimate the relative
contributions made by different terms in Eg8.31) and
(3.38. It is found that(i) dominant contributions for all elas-
tic constants come from the angle independent teiimngo-
efficients of linear terms, i.e., terms involving skor cosy
are small compared to terms involving %jn and (iii ) the
relative contributions t&\, A;,, A,; made by angle depen-
dent terms are small compared to their relative contributions
to B;, By, andB;. The values of all these constants except
B,; are found to be of the order of 16 dynes. As has
already been pointed out, for a linear rigid molecBlg is
zero. For molecules with broken axial symmeByg is non-
zero but its value is less compared to other elastic constants.

The elastic constarB is found to be of the same order as in

Sm-A. However, as tilt angle increases the valueBofle-
creases. The two angle dependent terms in E388 are
found to cancel each other, and therefore, the major contri-
bution is due to the angle independent term.

051705-13

M2=wl

nonvanishing terms,

1 5
5\ 1272240
4 /15
- 5\/;3222(0)
2 S D. 5
Z\IQJZZZ(O) —Pow,| 4 \/ﬁ\]zzz(o)
1 5
5\/;1{—2J222<0>+ \/ﬁJzzo(O)}}
J5 2
4? [3220(0)_ 73222(0)H
5
4 \/;_Jzzz(o)
30 \F)
= 732222
1 5
3V g 4I2A0)+ \/ﬂ\]zzo(o))}
5 2
4%(\]220(0)_ \[7 \]222(0))}
5
4 \/2_1\]222(0)
\/E 4 \/T5
4 73222(0) 3 73222(0)
1 /10 7
§\f7(3222(0)_ \/;‘3220(0))}

5 2
4\/?—(3220(0) +2 \[73222(0))

10
M8=—F§[2\EJ222<0>

\/ﬂ)
6 73222(0)

+.n,

_ 2 2
Mi=—-w] + w5

+52w2

+on,

_ 2
M3= w]

+w§

+32(1)2 +,

+ ...

M4:_T1’T3

_ 2
Ms= w7

+w%

_Ezwz +,

=—w% +32w2 +,

— 2
M7—_(1)1

+(1)§ -|—...,

+.e,




YASHWANT SINGH AND JOKHAN RAM

_i\FJZZZ(O)—i—\/gJZQO(O)}

%5{3220(0)—2\@1222(0)} "
Mloz—Eg[ \/1;222(0) +
241\/§[ 14J222(0)+35\/_J220(0)H

V5

73220(0) +

,[15 \F)
=53
7 7 2222

M= —1]

_ 2
Mg—(l)l

=

M= wl

73

4+

1 5
Mm=wiEi\ﬂ%{%nnxm+7¢5hnamﬂ
— 5
+P3 302 0) | +
— 35 /3
M= — P, 8 3_53222(0) +
— 25
M15=Pow;| ——=J24A0) |+
1641105
— 5
M 16= Pyw| ———J5,40) [+
16 2W1 16\/1_05 222( ‘|

1 5
M17:_E§E\/;13222(0) +

1 5
MlBZEg[E\/;l‘]ZZZ(O) +

_ 5 3 28 |7

M19=Powq| 55 >aV 35 73222(0)+ 53220(0)

5 3
8 %Jzzz(o) +

Moo= _Ezwl

PHYSICAL REVIEW E 64 051705
25 /3
28 3_53222(0) +
5 3
28 3_5\]222(0) +
15 5
28 4‘]2222

14J—

Mz=—Powq

M 2= _Ezwl

M23 ’7'1 + -

S\F
28 V 35

We give explicit expressions for the coefficiertts, L,

M o4=Pow; 7J040)+

J22d(0)

APPENDIX B

L5 involving the first few terms of order and structural pa-

rameters,
1 G
Ll_gg (7_3)G2M71|022
5/ 3
* \[7 E"’\E Gl gppt - - - |,
1 2 S 2
|—2:52 VBG2 7yl oot 7(3\/5_ V3)G?7y 75l 20
—
1 2n2 2 2 2
52(3: ©2G2 gogt 2G2 1 7y] g0t \/5G 711 220
10
Y, 7627'%'222"' e
where

I 000= Joooo— 2J0002:
55 36
l020= 2J 0200~ 7%222“' 7\]0224’
1220= J2200~ 2322025

55 36
1 220= 2J 2200~ 732222+ 732224-
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