
PHYSICAL REVIEW E, VOLUME 64, 051705
Molecular theory of elastic constants of liquid crystals. III. Application to smectic phases
with tilted orientational order
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Using the density-functional formalism we derive an expression for the distortion free energy of systems
with continuous broken symmetry and use it to derive an expression for the elastic constants of smectic phases
in which the director is tilted with respect to the smectic layer normal. As in the previous papers of this series
@Y. Singh, S. Singh, and K. Rajesh, Phys. Rev. A45, 974 ~1992!; Y. Singh, K. Rajesh, V. J. Menon, and S.
Singh, Phys. Rev. E49, 501~1994!#, the expressions for the elastic constants are written in terms of order and
structural parameters. The structural parameters involve the generalized spherical harmonic coefficients of the
direct pair correlation function of an effective isotropic liquid. The density of this effective isotropic liquid
depends on the nature and amount of ordering present in the system and is evaluated self-consistently. We
estimate the value of elastic constants using reasonable guesses for the order and structural parameters.
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I. INTRODUCTION

In a previous paper@1# of this series~hereafter referred to
as I! we developed a theory based on the density-functio
formalism@2# for the deformation free energy of any syste
with continuous broken symmetry, and applied the theory
derive expressions for the elastic constants of uniaxial n
atic and smectic-A ~Sm-A) phases. In the second paper@3#
~hereafter referred to as II!, the theory was applied to deriv
expressions for all the 12 bulk elastic constants of biax
nematic phase of orthorhombic symmetry. These express
of elastic constants are written in terms of order parame
that characterize the nature and amount of ordering in
phase and the structural parameters that involve the gen
ized spherical harmonic coefficients of the direct pair cor
lation function of an effective isotropic liquid, the density
which is determined using a criterion of the weight
density-functional formalism. The purpose of this paper is
expand upon the theory given in I and apply it to tho
smectic phases in which the director is tilted with respec
the smectic-layer normal. This class of smectics includ
Sm-C, Sm-I, Sm-F, and Sm-K phases and their chiral ver
sions.

In general, smectic liquid crystals have a stratified str
ture with the long axes of the rodlike or lathlike molecul
parallel to each other in the layers. This situation cor
sponds to partial breakdown of translational invarian
Since a variety of molecular arrangements are poss
within each layer, a number of smectic phases are poss
Thus a smectic is defined by its periodicity in one directi
of space and by its point group symmetry, which is a co
tinuous or discrete subgroup ofD`h . In this article we are
confined to those smectic phases where point group sym
tries areC2h andC2. The most important phases of this cla
of smectics, as far as elasticity is concerned, are Sm-C and
Sm-C* phases.

In Sm-C the molecules are arranged as shown in Fig
Each smectic layer is a two-dimensional liquid. The direc
n̂ makes a finite angle with the normal to the layer. The tilt
1063-651X/2001/64~5!/051705~15!/$20.00 64 0517
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orientational order is described by a two-dimensional u
vector, which is along the projection ofn̂ on the layer and is
denoted asĉ ~see Fig. 1!. The direction ofĉ is defined rela-
tive to a chosen axis in the plane and simultaneously with
sign of projection ofn̂ on the normal to the layer. The cor
relation of the tilt direction of different layers implies thatĉ
must be uniform over macroscopic distances. Though SmC

is n̂↔2n̂ symmetric, such a symmetry operation does n
hold for theĉ director. The states described byĉ and2 ĉ are
not equivalent and henceĉ is a two-dimensional polar vector
The tilted structure introduces biaxiallity within the laye
and Sm-C is optically biaxial with point symmetryC2h .

The other nonchiral smectic phases of this class, nam
Sm-I, Sm-F, and Sm-K all possess more order than the SmC
phase. In these, each smectic layer is an independent
dimensional bond-orientational ordered system. The c
pling between neighboring hexatic layers drives the qua
long-range, hexatic bond-orientational ordering of a lay
into a truly long range ordered hexatic state. Therefore th
phases have long ranged bond-orientational order but s
ranged positional order in the layer in a three-dimensio
stacked hexatic system. The directorn̂, as in Sm-C, makes a
finite angle with the layer normal. These phases, in spite
having quite different local order, have the same symme
as a Sm-C phase. The phase transition between Sm-C and

FIG. 1. Molecular arrangements in Sm-C, the directorsn̂, ĉ, and
the space-fixed coordinate frame.
©2001 The American Physical Society05-1
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YASHWANT SINGH AND JOKHAN RAM PHYSICAL REVIEW E 64 051705
one of the tilted hexatic phases is found to be first order. T
transition is analogous to the three-dimensional liquid to
por transition, which is first order up to a critical point, an
beyond the critical point there is no real phase transiti
One can go continuously from one to the other phase with
a phase transition at all. The expressions for the elastic
energy density of these phases are, therefore, similar to
of Sm-C; the difference can be only quantitative. In view
this we discuss the elasticity of Sm-C phase only.

The chiral smectic-C ~Sm-C* ) has a modulated structur
at a scale dimension of the order of 1mm and larger. The
modulated~helical! structure occurs as a result of a prece
sion of the molecular tilt about an axis perpendicular to
layer planes. The tilt direction is rotated through an a
muthal anglef on moving from one layer to the next. As th
rotation is in a constant direction, a helix is formed, which
either left or right handed. In Sm-C* the mirror plane is lost
but theC2 axis is present locally in each smectic layer~it is
perpendicular to the plane containing the molecular ax!.
The C2 axis in the case of Sm-C* phase is a polar axis
which admits the existence of a spontaneous polariza
along it. The Sm-C* phase therefore exhibits ferroelectricit

Many compounds exhibit phases such as antiferroelec
~Sm-CA* ), ferroelectric~Sm-Cr* ), etc. in addition to Sm-C* ,

as the temperature is varied. The directorn̂ in the Sm-CA*
phase, like in Sm-C* phase, is uniformly tilted with respec
to the layer normal. However, unlike in Sm-C* phase, the
difference in azimuthal angle ofn in successive layers isp
1a. The small anglea gives rise to a helical structure ofn
along the layer normal and arises from the chirality of t
constituent molecules. In Sm-Cr* the layers are stacked i
such a way that there is a net overall~in contrast to Sm-CA*
phase! spontaneous polarization. This means the numbe
layers of opposite polarization is not equal. The elastic
associated with the structure of all chiral smectic phase
same as that of Sm-C* phase.

The paper is organized as follows. In Sec. II we descr
the elastic continuum theory for Sm-C and Sm-C* phases
and derive expressions for the elastic free energy den
This expression is then written in terms of deformation va
ables so that it becomes appropriate for comparison with
expression found from microscopic theory. The dens
functional approach has been used in Sec. III to describe
deformed state of smectics with tilted orientational ord
The expression for the deformation free energy density
rived here is more general than that given in I in the se
that all the cases discussed in I correspond to tilt angle e
to zero. The expressions for the elastic constants are der
by comparing the elastic free energy found from the dens
functional theory with that given in Sec. II. These expre
sions of the elastic constants involve the order parame
that measure the nature and amount of ordering in the sys
and the direct pair correlation function~DPCF! of an effec-
tive isotropic liquid. In Sec. IV we discuss the relative ma
nitude of these constants using reasonable guesses fo
order parameters and the spherical harmonic coefficient
the DPCF.
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II. CONTINUUM THEORY FOR ELASTIC FREE ENERGY
DENSITY

An undeformed smectic has parallel and equidistant l
ers and a position independent director. When some sm
amplitude long wavelength distortions are imposed on t
ideal state, layers may get displaced and curved.
u(x,y,z) represent displacements of the layer normal to th
planes. A layer atz0 before displacement is now at

z~x,y!5z01u~x,y,z!. ~2.1!

We choose a space-fixed~SF! frameS0 such that itsz axis
is along the normal to the unperturbed smectic layers~see
Fig. 1!. The system is described by~i! the angleVz of direc-
tor ĉ with respect to thex axis and~ii ! the vertical displace-
mentu of the layers whose derivatives

Vx5
]u

]y
and Vy52

]u

]x
~2.2!

represent small angles of rotation aboutx andy axes, respec-
tively.

Since the free energy of a system with broken continu
symmetry is invariant with respect to spatially uniform di
placements and rotations that take the system from one p
in the ground state manifold to another, the elastic free
ergy must be a function of derivatives ofV or second order
derivatives ofu, which correspond to the curvature of th
planes. The contribution to free energy density due to de
mation is called elastic free energy densityf e(r ). To find
f e(r ) one expandsf (r ), which belongs to the deformed sta
around the ideal state having the free energy densityf u . The
expansion is expressed in terms of the spatial derivative
the order parameter fields. The elastic continuum the
deals only with small spatial derivatives. Consequently, o
the lowest order terms in the expansions are taken into
count.

Because of the symmetry of Sm-C the free energy density
must be invariant of the simultaneous transformationsx
→2x, y→2y, andz→2z ~due to center of symmetry! and
of the transformationy→2y as the verticalxz plane is the
plane of symmetry. Thus for the elastic free energy den
one has@4#

f e~r !5 f dc~r !1 f dk~r !1 f dck~r !1 f dl~r !, ~2.3!

wheref dc represents contribution arising due to distortion
director ĉ while f dk is associated with curvature of layer
f dck represents the contribution arising due to coupling
different deformation modes whereasf dl represents the con
tribution due to variation in layer thickness as in Sm-A. Thus
@1#

f dl5
1

2
B̄g2, ~2.4!

whereg5]u/]z describes the variation in the thickness
layers.
5-2
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To derive expressions forf dc, f dk, f dck we consider a
director triad formed by three orthonormal unit vectorsĉ,
k̂, p̂ and let, at the origin, the directorĉ be along thex axis of
the SF frame,k̂ along z axis, i.e., along the normal to th
layers, andp̂ alongy axis, i.e.,

ĉ05~1,0,0!, p̂05~0,1,0!, k̂05~0,0,1!. ~2.5!

The orientation of the director triad at a neighboring po
is rotated with respect to the space-fixed coordinate fra
due to deformation and is given as

ĉ5~1,cy ,cz!, p̂5~px,1,pz!, k̂5~kx ,ky,1!. ~2.6!

Because of orthonormality condition of the director tria

px52cy , pz52ky , cz52kx . ~2.7!

For small deviations we have

kx52
]u

]y
5Vy , ky52

]u

]x
52Vx , ~2.8!

and

cy5Vz.

Combining the three orthonormal vectorsĉ, k̂, p̂ we can
form nine invariants. The elastic free energy density can
expressed in terms of these invariants@5#

D115capb]akb5 ĉ•“ k̂•p̂52
]Vx

]x
,

D215papb]akb5p̂•“ k̂•p̂52
]Vx

]y
,

D315kapb]akb5 k̂•“ k̂•p̂52
]Vx

]z
52

]2u

]x]z
,

D125cakb]acb52 ĉ•“ k̂• ĉ52
]Vy

]x
,

D225pakb]acb52p̂•“ k̂• ĉ52
]Vy

]y
5D11,

D325kakb]acb52 k̂•“ k̂• ĉ52
]Vy

]z
52

]2u

]y]z
,

D135cacb]apb52 ĉ•“ ĉ•p̂52
]Vz

]x
,

D235pacb]apb52p̂•“ ĉ•p̂52
]Vz

]y
,

D335kacb]apb52 k̂•“ ĉ•p̂52
]Vz

]z
. ~2.9!
05170
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Note that the invariantsD31 andD32 correspond to varia-
tion of layer compression~or dilation! along y and x axes,
respectively,

D3152
]Vx

]z
52

]2u

]y]z
52

]g

]y
52p̂•“g,

D3252
]Vy

]z
52

]2u

]x]z
52

]g

]x
52 ĉ•“g. ~2.10!

These terms are omitted as their contributions are small c
pared to linear termf dl @see Eq.~2.4!#. We are therefore left
with six independent invariants.

The elastic free energy density due to orientational de
mation of Sm-C can be written in terms of these six inde
pendent invariants. Each term should, however, satisfy
symmetry elements of Sm-C. Note that (k̂,ĉ) plane is a sym-
metry plane,p̂ is C2 axis, and there is also inversion sym
metry. We can therefore write elastic free energy density a
sum of the square of each invariant and their products ta
in such a way thatk̂ and ĉ enter the expansion an eve
number of times~i.e., k̂ and ĉ are considered without dis
crimination!, andp̂ also appears even number of times but
its own. Thus

f dc5
1

2
B1D13

2 1
1

2
B2D23

2 1
1

2
B3D33

2 1B13D13D33,

~2.11a!

f dk5
1

2
A~D111D22!

21
1

2
A12D12

2 1
1

2
A21D21

2 ,

~2.11b!

f dck5C1D11D131C2D21D231C3D12D231C4D12D21.

~2.11c!

Since

D12D235S ]Vy

]x D S ]Vz

]y D5
]

]y S Vz

]Vy

]x D2
]

]x S Vz

]Vy

]y D
1

]Vz

]x

]Vy

]y
, ~2.12!

it is the sum of two gradient terms~surface terms! and a term
analogous toD11D13. Similar decomposition can also b
made forD12D21. We therefore have only two independe
terms in the expression off dck due to coupling between th
deformation of directorc and the curvature of smectic layer
as given in Ref.@4#.

Sincef dc involves directorĉ, it can be written in terms of
(“• ĉ)2, (ĉ•“3 ĉ)2, and (ĉ3“3 ĉ)2 as

~“• ĉ!25S ]Vz

]y D 2

5D23
2 , ~2.13!

~ ĉ•“3 ĉ!25S ]Vz

]z D 2

5D33
2 ,
5-3
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~ ĉ3“3 ĉ!25S ]Vz

]x D 2

5D13
2 ,

and

~ k̂•“3 ĉ!~ ĉ•“3 ĉ!5S ]Vz

]x D S ]Vz

]z D5D13D33.

Therefore the constantsB1 , B2 , B3 , B13 can be identified
as elastic constants associated with bend, splay, twist,
coupled twist-bend modes of deformations of directorĉ and
have the dimension of energy per unit length~dynes!. The
last term in Eq.~2.11a! is allowed because SmC is invariant
under the simultaneous transformationn̂→2n̂ and ĉ→2 ĉ.
These constants are expected to be comparable in magn
to the Frank elastic constants of a homologous nem
phase.

The contributionf dk is analogous to Sm-A and is due to
layer deformation~curvature!. The termsA, A12, and A21
represent splay contribution of system of monoclinic symm
try as Sm-C hasC2h symmetry in contrast toD`h of Sm-A.
The value of these constants are therefore expected to b
the same order of magnitude as in Sm-A phase.B̄ @see Eq.
~2.4!#, which has dimensions of energy per unit volume,
associated with possible change of interlayer distance.

Since Sm-C* has no inversion symmetry, its elastic fre
energy density may have terms linear in invariants of E
~2.9!. However, due to symmetry requirements only tho
invariants that involvek̂ and ĉ in pairs without discrimina-
tion, andp̂ alone contribute to linear terms. Thus

f d
(1)52D1~ ĉ•“ ĉ•p̂!1D2~ p̂•“ k̂• ĉ!2D3~ k̂•“ ĉ•p̂!,

~2.14!

where superscript 1 stands for linear terms. In terms ofV
vector field

f d
(1)5D1S ]Vz

]x D1D2S ]Vx

]x D1D3S ]Vz

]z D . ~2.15!

Out of the three terms in Eq.~2.15! the termD3 is most
important as it corresponds to simple twist of directorĉ. The
termD1 corresponds to bend of directorĉ while D2 tends to
transform a flat layer into a twisted ribbon. The termsD1 and
D2 are expected to be negligible in comparison to theD3
term.

If q052(D3 /B3) whereB3 is defined in Eq.~2.11a!, the
contribution f dc(r ) for Sm-C* is modified to

f dc~r !5
1

2
B1S ]Vz

]x D 2

1
1

2
B2S ]Vz

]y D 2

1
1

2
B3S ]Vz

]z
1q0D 2

1B13S ]Vz

]x D S ]Vz

]z D , ~2.16!

while other terms of Eq.~2.11! remain same. The groun
state of Sm-C* has a helical structure. TheB3 term can
05170
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therefore be considered to be a contribution due to defor
tion from this uniform helical structure.

The expressions for the elastic constants are obtained
comparing the expression of elastic free energy density
tained from the continuum theory and from a microsco
theory involving molecular parameters. In order to make t
comparison possible we have to rewrite Eq.~2.16! in terms
of distortion vectors defined below.

Since in the ground state, the directors are position in
pendent, we takeS0 to be the unperturbed director frame at
point R. Let S0 be described by the unit vectorsN0

( j ) such
that @see Eq.~2.5!#

N0
(1)5 ĉ0 , N0

(2)5p̂0 , N0
(3)5 k̂0 . ~2.17!

Let S be the perturbed director frame described by
unit vectorN( j ) such that@see Eq.~2.6!#

N(1)5 ĉ5 ĉ01s(1), N(2)5p̂5p̂01s(2),

N(3)5 k̂5 k̂01s(3), ~2.18!

wheres( j ) may be regarded as the distortion vectors, and

Nk
( j )5N( j )

•N0
(k)5d jk1sk

( j ) ~2.19!

be the components of the perturbed directors with respec
S0 frame.

The transformation fromS0 to S is effected by a 333
orthogonal matrixT with element

Tjk5Nk
( j )5d jk1sk

( j )

such that

N( j )5TjkN0
(k)5N0

( j )1sk
( j )N0

(k) .

The orthogonality conditionTi j Tik5d jk leads to

s j
(k)52sk

( j )2s j
( i )sk

( i ) for j Þk,

s j
( j )52

1

2 (
i

8 s j
( i )2 for j 5k, ~2.20!

where the prime on summation indicates no summation o
j. Thus for small deformations

s j
(k);O and s j

( j );O2,

whereO means first order small quantity.
From above relations it follows thats2

(1) , s1
(3) , ands3

(2)

can be regarded as basic independent distortion variable
as a function ofR. Every other component can be co
structed with the help of Eq.~2.20!.

From above discussions we find

cy5Vz5s2
(1) ,

kx5Vy5s1
(3) ,

ky52Vx52s3
(2) . ~2.21!
5-4
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Using these relations we rewrite Eq.~2.11! as

Fdc5E dRF1

2
B1S ]s2

(1)

]x D 2

1
1

2
B2S ]s2

(1)

]y D 2

1
1

2
B3S ]s2

(1)

]z D 2

1B13S ]s2
(1)

]x D S ]s2
(1)

]z D G , ~2.22a!

Fdk5E dRF1

2
AS ]s3

(2)

]x D 2

1
1

2
A12S ]s1

(3)

]x D 2

1
1

2
A21S ]s3

(2)

]y D 2G , ~2.22b!

Fdck5E dRFC1S ]s3
(2)

]x D S ]s2
(1)

]x D 1C2S ]s3
(2)

]y D S ]s2
(1)

]y D G .
~2.22c!

It is often convenient to assume long wavelength deform
tions in the space-fixed frame having the form

sk
( j )5Bk

( j ) sin~q•R!, ~2.23!

whereBk
( j ) are small amplitudes andq is the wave vector.

Substituting this into Eq.~2.22! leads to

Fdc

V
5

1

4
@B1~B2

(1)!2qx
21B2~B2

(1)!2qy
21B3~B2

(1)!2qz
2

1B13~B2
(1)!2qxqz#, ~2.24a!

Fdk

V
5

1

4
@A~B3

(2)!2qx
21A12~B1

(3)!2qx
21A21~B3

(2)!2qy
2#,

~2.24b!

Fdck

V
5

1

2
C1~B3

(2)B2
(1)!qx

21
1

2
C2~B3

(2)B2
(1)!qy

2 .

~2.24c!

In writing the above equations we have used the relation

E dR sin2~q•R!5E dR cos2~q•R!5
V

2

and

E dR sin~q•R!cos~q•R!50.

III. DENSITY-FUNCTIONAL APPROACH

A. Expression for the distortion free energy

A liquid crystalline phase is characterized by the spa
and orientational configuration of molecules. At the pha
transition point these configurations undergo a modificati
05170
-
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i.e., an abrupt change may take place in the symmetrie
the system. The molecular configurations of most orde
phases are adequately described by the single particle de
distributionr(x). The vectorx is taken here to indicate bot
the locationr of the center of a molecule and its relativ
orientationV described by Euler anglesf, u, c. For an
isotropic uniform system,r(x) is independent of positions
and orientations.

The single-particle density distributionr(x) provides us
with a convenient variational quantity to specify an arbitra
state of a system. One may consider a variational thermo
namic potentialW„T,P,@r(x)#… as a function ofr(x). The
equilibrium state of the system at a givenT and P is de-
scribed by the densityr(T,P,x) corresponding to the mini-
mum of W with respect tor(x). This forms the basis of the
density-functional theory@2#.

The basic thermodynamic potential used to determine
isothermal elastic properties of a system, consisting oN
particles in volumeV at temperatureT, is the Helmholtz free
energyA@r#. Elasticity is associated with the behavior
A@r# with respect to a small deformation of the system aw
from its equilibrium~ground! state@1#.

In the density-functional formalism the free energy of
system is expressed in terms of the direct correlation fu
tion of the medium@2#

bA@r#5bAid@r#1bDA@r#, ~3.1!

where the ideal gas part

bAid@r#5E dx r~x! $ ln@r~x!L#21% ~3.2!

andbDA@r# is the excess reduced free energy arising due
intermolecular interactions. Hereb5(kBT)21, wherekB is
the Boltzmann constant andT is the temperature. In the
weighted density-functional approach

bDA@r#52
1

2E dx1E dx2 r~x1!c~x1 ,x2 ,r̄ !r~x2!.

~3.3!

Here the functionc represents the DPCF of an effective is
tropic fluid. The effective densityr̄ is found using the rela-
tion @6#

r̄@r#5
1

r0VE dx1E dx2 r~x1! r~x2! v~x1 ,x2 ; r̄ !,

~3.4!

wherer0 is the averaged density of the ordered phase anv

is a weight factor.r̄@r# is viewed here as a functional o
r(x). To ensure that the approximation becomes exact in
limit of a uniform system, the weight factorv must satisfy
the normalization condition
5-5
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E dx2 v~x1 ,x2 ; r̄ !51.

Requiring thatv must satisfy

2c(2)~x1 ,x2 ;r0!5 lim
r→r0

d2~bDA!

dr~x1!dr~x2!
~3.5!

exactly, one finds

v~x1 ,x2 ; r̄ !52
1

2Da8~ r̄ !
Fb21 c~x1 ,x2 ; r̄ !1

1

V
r̄Da9~ r̄ !G ,

~3.6!

where Da( r̄) is the excess free energy per particle a
primes on it denote derivatives with respect to density.

The contribution to the free energy due to deformation
given as@1#

bDAe@r#5b~DAd@r#2DAu@r#!

52
1

2E dx1E dx2@rd~x1!rd~x2!

2r~x1!r~x2!#c~x1 ,x2 ; r̄ !, ~3.7!

wherebDAu@r# and r(x) are, respectively, the excess fre
energy and single particle density distribution of the grou
state of the ordered phase. The subscriptd refers to the cor-
responding quantities of the deformed state. In writing E
~3.7! it is assumed that the direct pair correlation functio
do not change due to deformation.

Since the isotropic fluid DPCF is an invariant pairwi
function, it has an expansion in the SF frame of the form

c~r ,V1 ,V2!5 (
l 1l 2l

(
m1m2m

(
n1n2

3c~ l 1 ,l 2 ,l ;n1 ,n2 ;r !Cg~ l 1 ,l 2 ,l ;m1 ,m2 ,m!

3D
m1 ,n1

l 1* ~V1!Dm2 ,n2

l 2* ~V2!Ylm* ~ r̂ !, ~3.8!

whereCg( l 1 ,l 2 ,l ;m1 ,m2 ,m) are the Clebsch-Gordon coe
ficients,c( l 1 ,l 2 ,l ;n1 ,n2 ;r ) is the harmonic expansion coe
ficient of the DPCF, andr̂5r /ur u is a unit vector along the
intermolecular axis.

The elastic constants are defined by the second-order
of the expansion of the free energy of the deformed s
around the free energy of the equilibrium~ground! state in
the ascending powers of a parameter, which measures
deformation. The first term of this expansion is balanced
the equilibrium stresses of the ground state. One defines
elastic free energy per unit volume as
05170
s

d

.
s

rm
te

the
y
he

Ee

V
5

1

V
†DAe@r#1P~Vd2V!‡,

whereVd is the volume of the deformed sample andP the
isotropic pressure.

For an ordered~liquid crystalline! phase,r(x) is ex-
pressed in terms of the Fourier series and the Wigner rota
matrices@2# as

r~x!5r~r ,V8!5r0(
G

(
lmn

Qlmn~G!exp@ iG•r #Dmn
l ~V8!,

~3.9a!

where the expansion coefficients

Qlmn~G!5
2l 11

N E drE dV8r~r ,V8!

3exp~2 iG•r !Dmn
l* ~V8!. ~3.9b!

Here $G% are the reciprocal lattice vectors~RLV’s! of the
positionally ordered structure that might be present in
system andr0 is the mean number density of the system. A
the angles that appear in Eq.~3.9! refer to a coordinate
frame, thez axis of which is along the directorn̂. Using the
rotational property of theD matrices @7#, we rewrite Eq.
~3.9a! so that all the angles appearing in it refer to the spa
fixed coordinate frame shown in Fig. 1. Thus

r~r ,V!5r0(
G

(
lmn

(
q

Qlmn~G!exp@ iG•r #Dqm
l* ~ n̂!Dqn

l ~V!.

~3.10!

In the limit of long wavelength distortion, the magnitud
of the order parameters is assumed to remain unchanged
changes occur in the direction of the directors, making th
position dependent, and in the RLV’sG. The RLV’s Gd of
the strained structure are related toG of the unstrained struc
ture as

Gd5~ I1e!21G. ~3.11!

Heree is a strain matrix that governs the change in positio
Thus for a deformed state,

rd~r ,V!5r0(
G

(
lmn

(
q

Qlmn~G!

3exp~ iGd•r !Dqm
l* ~ n̂d!Dqn

l ~V!, ~3.12!

where n̂d(r ) indicates the direction of director atr of the
deformed state. In the deformed state, the director orie
tions become position dependent. One uses the rotati
properties ofD matrices to rewrite Eq.~3.11! in terms of the
director of a chosen point. Substituting Eqs.~3.8!–~3.12! into
Eq. ~3.7! and after some simplifications we get
5-6
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bDAd

V
52

1

2
r0

2(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

(
G

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
3Cg~ l 1l 2l ;m18m8l!Dml

l* ~ n̂!E dr @exp~ iGd•r !D
m8m

28

l 2 ~Dx!

2dm8m
28
exp~ iG•r !#c~ l 1l 2l ;n1n2 ;r !Ylm* ~ r̂ !, ~3.13!

wheren̂ indicates the orientation of the director at the reference pointR andDx indicates the angle between the directors
R andR1r . Equation~3.13! presents a general expression for the distortion free energy density for the continuous sym
broken phases with tilted orientational order in the limit of long wavelength distortion. Since for uniaxial phases the d
is along thez axis of the SF coordinate frame,Dml

l* (n50)5dml . When this is substituted in Eq.~3.13! it reduces to Eq.~3.9!
of I.

Equation~3.13! can be used to derive expressions for the contributions arising due to curvature in the director orie
and dilation in layer thickness. The term that represents the coupling of these two terms of distortions is neglected.

bDAd

V
5 f 11 f 2 , ~3.14!

where

f 152
1

2
r0

2(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

(
G

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
Cg~ l 1l 2l ;m18m8l!

3Dml
l* ~ n̂!E dr exp~ iG•r !@D

m8m
28

l 2* ~Dx!2dm8m
28
#Ylm* ~ r̂ ! c~ l 1l 2l ;n1n2 ;r !, ~3.15!

f 252
1

2
r0

2(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

(
G

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
Cg~ l 1l 2l ;m18m8l!

3Dml
l* ~ n̂!E dr @exp~ iGd•r !2exp~ iG•r !#dm8m

28
Ylm* ~ r̂ !c~ l 1l 2l ;n1n2 ;r !. ~3.16!

While f 1 includes all contributions arising due to curvature in directors orientations,f 2 is the contribution due to dilation
~compression! in layer thickness.

B. Expressions for the elastic constants associated with directors orientations

All the elastic constants associated with curvature in director orientations can be derived from the expression off 1 given in
Eq. ~3.15!. Using the procedure outlined in II we rewrite Eq.~3.15! in terms of the director components. Thus

f 152
1

2
r0

2(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

(
G

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
Dml

l* ~ n̂!E dr r 4E dr̂

3F1

2
uB1

(3)u2$~a111a12!~qz
22qx

2!~ r̂• x̂!~ r̂• ẑ!1~a231a211a22!@qx
2~ r̂• x̂!21•••#%

1
1

2
uB2

(3)u2$ i ~a122a11!qy
2~ r̂• ŷ!~ r̂• ẑ!1~a232a212a22!@qx

2~ r̂• x̂!21qy
2~ r̂• ŷ!21•••#%

1
1

2
uB2

(1)u2H ib2~qx
22qy

2!~ r̂• x̂!~ r̂• ŷ!2
1

2
b2

2@qx
2~ r̂• x̂!21qy

2~ r̂• ŷ!21qz
2~ r̂• ẑ!2#2b2

2qzqx~ r̂• ẑ!~ r̂• x̂!1•••J

051705-7
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1B2
(1)B2

(3)H 2
1

4
~a111a12!@qx

2~ r̂• x̂!21qy
2~ r̂• ŷ!21•••#1

i

2
~a112a12!@~qx

22qy
2!~ r̂• x̂!~ r̂• ŷ!1•••#

1
ib2

2
@~qz

22qy
2!~ r̂• ŷ!~ r̂• ẑ!1•••#2

1

2
m28~a112a12!@qx

2~ r̂• x̂!21qy
2~ r̂• ŷ!21•••#J 1•••G

3exp~ iG•r !Ylm* ~ r̂ !c~ l 1l 2l ;n1n2 ;r !, ~3.17!
ies
where

a1152
1

2
$~ l 21m2811!~ l 22m28!%1/2Cg~ l 1l 2l ;m18 ,m2811,l!,

a125
1

2
$~ l 22m2811!~ l 21m28!%1/2Cg~ l 1l 2l ;m18 ,m2821,l!,

a215
1

8
$~ l 21m2812!~ l 22m2821!~ l 21m2811!~ l 22m28!%1/2

3Cg~ l 1l 2l ;m18 ,m2812,l!,

a225
1

8
$~ l 22m2812!~ l 21m2821!~ l 22m2811!~ l 21m28!%1/2

3Cg~ l 1l 2l ;m18 ,m2822,l!,

a2352
1

8
$~ l 21m28!~ l 22m2811!1~ l 22m28!~ l 21m2811!%

3Cg~ l 1l 2l ;m18 ,m28 ,l!,
05170
b215m28Cg~ l 1l 2l ;m18 ,m28 ,l!,

b225m28
2Cg~ l 1l 2l ;m18 ,m28 ,l!.

Since the plane wave exp(iG•r ) travelling in thez direc-
tion ~because of the layered structure of smectic phases! is
symmetrical about thez axis and can be expanded as a ser
of Legendre polynomials referring to this axis,

eiGz125(
l 8

~ i ! l 8~2l 811! j l 8~Gr !Pl 8~cosu!, ~3.18!

wherej l 8(Gr) are the spherical Bessel functions andu is the
angle between thez axis and intermolecular axisr.

After performing the angular integration overr̂ we com-
pare the resulting expression with Eq.~2.24! and obtain the
following expressions for the elastic constants.
bB152r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m18n1

~G!Ql 2m
28n2

~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 Fb21

A6
S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!$Cg~2l 8l ;202!dm22Cg~2l 8l ;202!dm2%

2
b22

6 H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm01A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J G , ~3.19!

bB25r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 Fb21

A6
S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!$Cg~2l 8l ;202!dm22Cg~2l 8l ;202!dm2%
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1
b22

6 H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!dm02A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J G , ~3.20!

bB35r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8

6

A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 b22Fd l l 8dm012S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm0G , ~3.21!

bB1352r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!

1

2A6

1

A~2l 11!
Ql 1m

18n1
~G!

3Ql 2m
28n2

~2G!Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 b22Cg~2l 8l ;000!@Cg~2l 8l ;101!dm11Cg~2l 8l ;101!dm1#, ~3.22!

bA52r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!

1

3
~a232a212a22!Ql 1m

18n1
~G!

3Ql 2m
28n2

~2G!Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 Fd l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm01A3

2S 2l 811

2l 11 D 1/2

3Cg~2l 8l ;000!$Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2%G , ~3.23!

bA1252r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 F 1

A6
S 2l 811

2l 11 D 1/2

~a111a12!Cg~2l 8l ;000!$Cg~2l 8l ;101!dm11Cg~2l 8l ;101!dm1%

1
1

3
~a231a211a22!H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm01A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J G , ~3.24!

bA2152r0
2A4p (

l 1l 2l l 8
(

m18m28
(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 F2
1

A6
S 2l 811

2l 11 D 1/2

~a122a11!Cg~2l 8l ;000!$Cg~2l 8l ;101!dm12Cg~2l 8l ;101!dm1%

1
1

3
~a232a212a22!H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm02A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J G , ~3.25!
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bC15
r0

2A4p

2 (
l 1l 2l l 8

(
m18m28

(
ml

(
n1n2

(
G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 F 1

A6
S 2l 811

2l 11 D 1/2

~a112a12!Cg~2l 8l ;000!$Cg~2l 8l ;202!dm22Cg~2l 8l ;202!dm2%

2
1

3 H 1

2
~a111a12!1m28~a112a12!J H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm01A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J G , ~3.26!

bC252
r0

2A4p
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l 1l 2l l 8

(
m18m28

(
ml

(
n1n2
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G

~ i ! l 8
A~2l 811!

~2l 111!~2l 211!
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

3Dml
l* ~ n̂!J

l 1l 2l l 8

n1n2 F 1

A6
S 2l 811

2l 11 D 1/2

~a112a12!Cg~2l 8l ;000!$Cg~2l 8l ;202!dm22Cg~2l 8l ;202!dm2%

1
1

3 H 1

2
~a111a12!1m28~a112a12!J H d l l 8dm02S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2dm02A3

2S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!

3@Cg~2l 8l ;202!dm21Cg~2l 8l ;202!dm2#J 2
1

A6
m28Cg~2l 8l ;m18m28l!S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!$Cg~2l 8l ;101!dm1

2Cg~2l 8l ;101!dm1%G , ~3.27!

where

Jl 1l 2lL
n1n2 5E dr r 4 j L~Gr !c~ l 1l 2l ;n1n2 ;r !
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are the structural parameters. A line under a number den
a negative quantity. Equations~3.18!–~3.26! give general ex-
pressions for the curvature elastic constants of the Sm-C and
other phases of this class in the long wavelength limit. Fr
these results one can obtain expressions for the elastic
stants of a given phase by using the appropriate order pa
eters corresponding to the phase.

The structures of smectic phases are characterized
three different class of order parameters:~i! orientational,~ii !
positional, and~iii ! mixed @2#. In general there can be upt
(2l 11)2 orientational and so many mixed order paramet
of rank l for a given value of the reciprocal lattice vectorG.
One uses the symmetries of the phase and of the consti
molecule to reduce this number. Since Sm-C phase is biaxial
with point symmetryC2h , we choose the following orienta
tional order parameters atl 52 level ~molecules are assume
to be cylindrically symmetric!:

P̄25
1

5
Q205^P2~cosu!&, ~3.28a!
05170
tes

n-
m-

by

s

ent

v15
1

5
Q2152

1

5
Q215S 3

2D 1/2

^sinu cosu cosf&,

~3.28b!

v25
1

5
Q225

1

5
Q225S 3

8D 1/2

^sin2u cos 2f&. ~3.28c!

While P̄2 measures the degree of alignment of molecu
axis along the directorn, which makes a nonzero angle wit
the smectic plane normal,v1 andv2 measure the degree o
alignment along the directorc and the biaxial ordering. The
angular bracket indicates the average over the orientati
distribution.

For positional ordering one may choose as in the cas
Sm-A phase, one order parameter corresponding toG5Gz
52p/d whered is the layer spacing in equilibrium. Thus

m5Q00~G!5 K cos 2p
z

dL . ~3.29!
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The coupling between the positional and orientational
dering may be described by the order parameterst1 , t2, and
t3, where

t15
1

5
Q20~G!5 K cos

2pz

d
P2~cosu!L , ~3.30a!

t25
1

5
Q21~G!52

1

5
Q21~G!

5S 3

2D 1/2K cos
2pz

d
sinu cosu cosf L , ~3.30b!

t35
1

5
Q22~G!5

1

5
Q22~G!

5S 3

8D 1/2K cos
2pz

d
sin2u cos 2f L . ~3.30c!

Using these order parameters we give below explicit
pressions for the curvature elastic constants for Sm-C phase
consisting of cylindrically symmetric molecules;

B15M1 sin2c1M2 cosc1M3 , ~3.31a!

B25M4 sin2c2M2 cosc1M5 , ~3.31b!

B35M6 sin2c1M7 , ~3.31c!

B1350, ~3.31d!

A5M8 sin2c1M9 , ~3.31e!

A125M10sin2c1M11, ~3.31f!

A215M12sin2c1M13, ~3.31g!

C15M14sin2c1M15~11cosc!21M16~12cosc!2

1M17sinc1M18sinc cosc1M19, ~3.31h!
05170
-

-

C25M20sin2c1M21~11cosc!21M22~12cosc!2

2M17sinc1M23sinc cosc1M24. ~3.31i!

Herec is the tilt angle. The directorsn̂ andĉ of a uniform
phase are assumed to be in thexzplane. The expressions fo
the constantsM1 to M24, which involve the order and struc
tural parameters and are, therefore, temperature and de
dependent, are given in Appendix A. In writing these expr
sions we have taken into account the fact that, for a sys
of rigid axially symmetric molecules,n15n250 and

c~ l 1l 2l ;00;r !5
1

4p
A~2l 111!~2l 211!cl 1l 2l~r !.

~3.32!

The structural parameters are connected with harmo
coefficientscl 1l 2l as

Jl 1l 2l~0!5
r0

2

A4p
E

0

`

drr 4cl 1l 2l~r ! ~3.33!

and

Jl 1l 2l l 85
r0

2

A4p
E

0

`

drr 4 j l 8~Gr !cl 1l 2l~r !. ~3.34!

Our results, given in Eqs.~3.31!, show that for cylindri-
cally symmetric moleculesB1350. This is, however, not true
in general. For molecules with broken cylindrical symmet
B13 will be nonzero. Its magnitude, however, appears to
small compared toB1 , B2, and B3. Madhusudana and co
workers@8# have foundB13/B1'0.3

C. Expression for the elastic constantB̄

As mentioned above the expression for the elastic c
stant B̄ is derived from the expression off 2 given by Eq.
~3.16!. Since Sm-C as well as Sm-C* have one-dimensiona
positional ordering in addition to orientational ordering w
have
f 252
1

2
r0

2(
G

(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
Cg~ l 1l 2l ;m18m8l!

3Dml
l* ~ n̂!E dr @exp~ iGdz12!2exp~ iGz12!#dm8m

28
c~ l 1l 2l ;n1n2 ;r !Ylm* ~ r̂ !, ~3.35!

whereG52pk/d andGd52pk/de ; de andd are the interlayer spacing of the distorted and undistorted Sm-C ~and Sm-C* )
phase. Using Eq.~3.11! we expand the above equation in ascending powers of the dilation parametere5de /d21. The term
associated with (1/2)e2 defines the bulk elastic constantB̄. Comparing Eq.~3.35! and with Eq.~2.4! we get

B̄5
kT

2
r0

2(
G

(
l 1l 2l

(
m18m28m8

(
ml

(
n1n2

Ql 1m
18n1

~G!Ql 2m
28n2

~2G!

~2l 111!~2l 211!
Cg~ l 1l 2l ;m18m8l!

3Dml
l* ~ n̂!G 2E dr z12

2 exp~ iGz!c~ l 1l 2l ;n1n2 ;r !Ylm* ~ r̂ !. ~3.36!
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Using Eq.~3.18! we have

B̄5
kTr0

2

6
A4p(

G
(

l 1l 2l l 8
(

m18m28m8
(
l

(
n1n2

~ i ! l 8
Ql 1m

18n1
~G!Ql 2m

28n2
~2G!

~2l 111!~2l 211!

3G 2~2l 811!1/2D0l
l* ~ n̂!Cg~ l 1l 2l ;m18m8l!J

l 1l 2l l 8

n1n2 Fd l l 812S 2l 811

2l 11 D 1/2

Cg~2l 8l ;000!2G . ~3.37!
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As shown in I, the term proportional toe in the free
energy expansion gives the condition for the interlayer sp
ing. In terms of the order parameters given by Eqs.~3.29!–
~3.30!, Eq. ~3.37! can be written as

bB̄5L1 sin2c1L2 sinc cosc1L3 . ~3.38!

The expressions forL1 , L2, andL3 for a system consist
ing of cylindrically symmetric molecules are given in Ap
pendix B.

IV. DISCUSSIONS

In order to estimate the values of elastic constants gi
above we need the values of the order parameters, gen
ized spherical harmonic coefficients of the direct pair cor
lation functions of an effective fluid as a function of tem
perature and density, and the information about
constituent molecules, viz., electric multipole moments,
ometry of the repulsive core, length-to-width ratio, etc.
input parameters.

Since in the limit of long-wavelength distortions the ma
nitude of the order parameters are assumed to remain
changed, the value of the order parameters at a given
perature and the density may be either determi
experimentally or calculated from a theory. Thec harmonics
for a given system can, in principle, be found either by so
ing the Ornstein-Zernike equation with suitable closure re
tions @6# or by adopting a perturbative scheme, which
based on the fact that the fluid structure at high densitie
primarily controlled by the repulsive part of the interaction
However, such calculations for nonaxial molecules are v
complicated and may need enormous computational eff
to generate reliable data forc harmonics@9#.

The difficulty that arises in applying the theory to re
systems is related to the potential energy of interaction
tween mesogenic molecules. The mesogenic molecules
large and have groups of atoms with their own local featu
One way to construct the potential energy of interaction
tween two such molecules is to sum the interatomic or s
site potential between atoms or between interaction s
However, for mesogenic molecules there are too many te
in this sum to be practical. Moreover, the dependence
interaction on molecular orientations in this expression
implicit so that it is difficult to use it in the calculation o
angular orientation, which gives rise to liquid crystals.

In another and more convenient approach one uses
molecular approximation in which it is assumed that the
05170
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termolecular potential energy depends upon only the posi
of the center of mass and on their orientations. This kind
approach neglects the flexibility of molecular structu
which plays an important role in the stability of many liqu
crystalline phases. In view of various complexities in t
intermolecular interaction one is often forced to use a p
nomenological description, either as a straightforward mo
unrelated to any particular physical system, or as a basis
describing by adjustable parameters fitted to experime
data for interaction between two molecules. Most commo
used models are hard ellipsoids of revolution, hard sphe
cylinders, cut sphere@10#, and Gay-Berne~GB! @11#. How-
ever, none of these are known to show the existence of SC
phase.

The computer simulation study@12# shows that the GB
model exhibits Sm-A and Sm-B phases. The GB potentia
contains four independent parameters that control the an
ropy in the attractive and repulsive interactions and can
written as

u~1,2!54e~ r̂ ,V1 ,V2!F H s0

r 2s~ r̂ ,V1 ,V2!1s0
J 12

2H s0

r 2s~ r̂ ,V1 ,V2!1s0
J 6G . ~4.1!

Here e( r̂ ,V1 ,V2) and s( r̂ ,V1 ,V2) are angle dependen
strength and range parameters, respectively, and are de
as

e~ r̂ ,V1 ,V2!

5e0@12x2~ ê1•ê2!2#21/2F12x8

3
~ r̂•ê1!21~ r̂•ê2!222x8~ r̂•ê1!~ r̂•ê2!~ ê1•ê2!

12x82~ ê1•ê2!2 G 2

,

s~ r̂ ,V1 ,V2!

5s0F12x

3
~ r̂•ê1!21~ r̂•ê2!222x~ r̂•ê1!~ r̂•ê2!~ ê1•ê2!

12x2~ ê1•ê2!2 G21/2

,

~4.2!
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whereê1 andê2 are the unit vectors along the symmetry ax
of two interacting molecules.e0 ands0 are parameters tha
provide a measure of the attractive interactions and the w
of the molecule. The anisotropy parameterx andx8 are de-
fined as

x5
x0

221

x0
211

and x85
k81/221

k81/211
,

wherex052a/2b is the length~major axis! to breadth~minor
axis! ratio andk8 is the ratio of the potential well depth fo
the side by side and end to end configurations. We h
taken herex053.0 andk855. The harmonics were gene
ated by solving the Ornstein-Zernike equation using
Percus-Yevick closure relation@13#. Using thesec harmonics
we have calculated the values of the structural paramete
kBT/e050.8 and the packing fractionh5(p/6)x0r0s0

3

50.49. The values of few structural parameters forG50
andG52p/x052.0944 so obtained are as follows:

J220~0!52.231 74, J0000522.789 02,

J222~0!50.333 24, J0002524.611 92,

J224~0!524.022 96, J202050.075 39,

J242~0!50.309 51, J2022522.058 25,

J244~0!521.062 09, J2024520.565 03,

J440~0!50.498 93, J220050.133 22,

J442~0!520.091 14, J220250.6818,

J444~0!50.130 77, J2220520.493 32,

J2222520.006 27,

J222450.177 76,

J224050.540 22,

J2420520.258 49.

Since the values of the order parameters are not kno
we assume them to be equal to 0.5 to estimate the rela
contributions made by different terms in Eqs.~3.31! and
~3.38!. It is found that~i! dominant contributions for all elas
tic constants come from the angle independent term,~ii ! co-
efficients of linear terms, i.e., terms involving sinc or cosc
are small compared to terms involving sin2c, and ~iii ! the
relative contributions toA, A12, A21 made by angle depen
dent terms are small compared to their relative contributi
to B1 , B2, andB3. The values of all these constants exce
B13 are found to be of the order of 1026 dynes. As has
already been pointed out, for a linear rigid moleculeB13 is
zero. For molecules with broken axial symmetry,B13 is non-
zero but its value is less compared to other elastic consta
The elastic constantB̄ is found to be of the same order as
Sm-A. However, as tilt angle increases the value ofB̄ de-
creases. The two angle dependent terms in Eqs.~3.38! are
found to cancel each other, and therefore, the major co
bution is due to the angle independent term.
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APPENDIX A

In this appendix we give explicit expressions for the c
efficientsM1 to M24 in units ofkBT/s0 @see Eqs.~3.31!#. As
is obivious from Eqs.~3.19!–~3.27!, they involve order and
structural parameters of all orders. We list only first fe
nonvanishing terms,

M152v1
2F1

2
A 5

14
J222~0!G1v2

2F6A10

7
J222~0!G

1 P̄2v2F2
4

3
A15

7
J222~0!G1•••,

M25v1
2F2A 5

14
J222~0!G2 P̄2v2F4A 5

21
J222~0!G1•••,

M35v1
2F1

3
A 5

14
$22J222~0!1A14J220~0!%G

1v2
2F4

A5

3 H J220~0!2A2

7
J222~0!J G

1 P̄2v2F4A 5

21
J222~0!G1•••,

M452t1t3F30

7
A10

7
J2222G1•••,

M55v1
2F1

3
A 5

14
„4J222~0!1A14J220~0!…G

1v2
2F4

A5

3
„J220~0!2A2

7
J222~0!…G

2 P̄2v2F4A 5

21
J222~0!G1•••,

M652v2
2F4A10

7
J222~0!G1 P̄2v2F4

3
A15

7
J222~0!G1•••,

M752v1
2F1

3
A10

7
„J222~0!2A7

2
J220~0!…G

1v2
2F4

A5

3
„J220~0!12A2

7
J222~0!…G1•••,

M852 P̄2
2F2A10

7
J222~0!G1•••,
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M95v1
2F2

2

3
A 5

14
J222~0!1

A5

3
J220~0!G

2 P̄2
2F3A5

2 H J220~0!2
2

3
A2

7
J222~0!J G1•••,

M1052 P̄2
2FA10

7
J222~0!G1•••,

M115v1
2F 4

21
A 5

14H 214J222~0!1
35A14

8
J220~0!J G

1 P̄2
2FA5

2
J220~0!G1•••,

M1252t1
2F15

7
A10

7
J2222G1•••,

M135v1
2F 1

21
A 5

14
$28J222~0!17A14J220~0!%G

1 P̄2
2FA5

2
J220~0!G1•••,

M1452 P̄2v1F35

8
A 3

35
J222~0!G1•••,

M155 P̄2v1F 25

16A105
J222~0!G1•••,

M165 P̄2v1F 5

16A105
J222~0!G1•••,

M1752 P̄2
2F1

2
A 5

14
J222~0!G1•••,

M185 P̄2
2F1

2
A 5

14
J222~0!G1•••,

M195 P̄2v1F 5

28
A 3

35H 7J222~0!1
28

3
A7

2
J220~0!J G1•••,

M2052 P̄2v1F5

8
A 3

35
J222~0!G1•••,
.
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M2152 P̄2v1F25

48
A 3

35
J222~0!G1•••,

M2252 P̄2v1F 5

48
A 3

35
J222~0!G1•••,

M235t1
2F15

28
A 5

14
J2222G1•••,

M245 P̄2v1F 5

28
A 3

35 H 7J222~0!1
14A14

3
J220~0!J G1•••.

APPENDIX B

We give explicit expressions for the coefficientsL1 , L2 ,
L3 involving the first few terms of order and structural p
rameters,

L15
1

6 (
G

F SA6

2
23DG2mt1I 022

1A5

7S 3

A2
1A3D G2t1

2I 2221•••G ,

L25
1

6 (
G

FA6G2mt2I 0221A5

7
~3A22A3!G2t1t2I 222

1•••G ,
L35

1

6 (
G

Fm2G2I 00012G2mt1I 0221A5G2t1
2I 220

2A10

7
G2t1

2I 2221•••G ,
where

I 0005J000022J0002,

I 02252J02202
55

7
J02221

36

7
J0224,

I 2205J220022J2202,

I 22252J22202
55

7
J22221

36

7
J2224.
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